Effects of sodium chloride on the properties of chlorophyll a submonolayer adsorbed onto hydrophobic and hydrophilic surfaces using broadband spectroscopy with single-mode integrated optical waveguides

نویسنده

  • Rodrigo S. Wiederkehr
چکیده

Sergio B. Mendes University of Louisville Department of Physics and Astronomy 2210 South Brook Street Louisville, Kentucky 40292 E-mail: [email protected] Abstract. In this work, we experimentally investigated the effects of sodium chloride on the molar absorptivity and surface density of a submonolayer of chlorophyll a adsorbed onto hydrophilic and hydrophobic solid/liquid interfaces. Those investigations were made possible by a broadband spectroscopic platform based on single-mode, integrated optical waveguides, which allows for extremely sensitive spectroscopic detection of analytes immobilized at submonolayer levels. Chlorophyll a with a constant bulk concentration (1.4 μM) was dissolved in phosphate buffer solutions (7 mM) of neutral pH, but with different sodium chloride concentrations. For a buffer solution of 1 mM of sodium chloride, the measured surface density of chlorophyll a was 0.209 pmol/cm2 for a hydrophilic and 0.125 pmol/cm2 for a hydrophobic surface. For a phosphate buffer solution of 10 mM of sodium chloride, the measured surface density of chlorophyll a was 0.528 pmol/cm2 for a hydrophilic and 0.337 pmol/cm2 for a hydrophobic surface. Additionally, a hypsochromic shift of the Soret band was observed for the adsorbed pigment in correlation with an increase in buffer ionic strength. The adsorption of chlorophyll a onto different surfaces can play an important role to elucidate several processes found in nature and provide a rationale for bio-inspired new material technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigations on the Q and CT Bands of Cytochrome c Submonolayer Adsorbed on an Alumina Surface Using Broadband Spectroscopy with Single-Mode Integrated Optical Waveguides.

In this work, we report experimental results on the molar absorptivity of cytochrome c adsorbed at different submonolayer levels onto an aluminum oxide waveguide surface; our data show a clear dependence of the protein optical properties on its surface density. The measurements were performed using the broadband, single-mode, integrated optical waveguide spectroscopic technique, which is an ext...

متن کامل

Optical Impedance Spectroscopy with Single-Mode Electro-Active-Integrated Optical Waveguides

An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by...

متن کامل

Generation of functional coatings on hydrophobic surfaces through deposition of denatured proteins followed by grafting from polymerization.

Hydrophilic coatings were produced on flat hydrophobic substrates featuring n-octadecyltrichlorosilane (ODTS) and synthetic polypropylene (PP) nonwoven surfaces through the adsorption of denatured proteins. Specifically, physisorption from aqueous solutions of α-lactalbumin, lysozyme, fibrinogen, and two soy globulin proteins (glycinin and β-conglycinin) after chemical (urea) and thermal denatu...

متن کامل

Hydrophilic monomers suppress the adsorption of plasma protein onto a poly(vinylidene fluoride) membrane.

Dialysis is the single most important therapy for chronic kidney disease. However, protein adsorption onto hemodialysis membranes promotes clot formation. The aim of the present study was to develop a surface-modified membrane which suppresses protein adsorption. Using plasma polymerization, hydrophilic N-vinyl pyrrolidone (VP) and acryloyl morpholine (ACMO) were polymerized on hydrophobic poly...

متن کامل

Nanosecond Laser Surface Patterning of Bio Grade 316L Stainless Steel for Controlling its Wettability Characteristics

In this work, potential of the nanosecond laser processing technique on manipulating the surface wettability of 316L bio grade stainless steel is investigated. Results show that the steel wettability toward water, improves significantly after the laser treatment. Different analyses are assessed in correlation with wettability using Scanning Electron Microscope (SEM), Scanning Tunneling Microsco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011